Conception et fabrication d'une Yagi

TECHNIQUE

Suite à l'échec de la 8 éléments portable, je me suis intéressé a l'optimisation logicielle via MMANA-GAL. Je n'ai trouvé que peu de tutos en français sur ce logiciel. Beaucoup l'utilisent mais peu partagent, le comble...

YAGI CALCULATOR; ENTREE DES DONNEES ET EXPORT

Ma technique est de commencer par calculer via le logiciel « Yagi Calculator » de VK5DJ, d'exporter le fichier « .MMANA-GAL » pour ensuite l'optimiser. Je peux toujours prendre les cotes de DK7ZB au lieu d'essayer de sortir les miennes, certes, mais j'aime bien chercher par moi-même.

Ci-dessus j'ai inséré les deux pages, de gauche à droite, de l'entrée vers la sortie. En haut à gauche, avant de commencer, il faut tout de suite entrer la fréquence. Sélectionner « non metal boom… » même si votre boom sera en métal, on calculera plus tard.

Ce que j'ai demandé au programme c'est de me faire une antenne avec une fréquence centrale de 145 MHz 4 éléments avec un diamètre de 6 mm pour les éléments directeurs, réflecteur et le dipôle d'alimentation.

NOTA: Finalement j'ai opté pour une 5 éléments

Pour une histoire de bug qui me prend un peu la tête, le fichier .maa de sortie ne peut pas être lu par MMANA-GAL. J'ai du reporter les valeurs une à unes. Normalement vous pouvez exporter le .maa avec le bouton « create .maa » sur l'écran de sortie.

BASE DE L'OPTIMISATION

Au final qu'est-ce que c'est une antenne ? Un compromis.

En effet on souhaite avoir un gain maximum (avec une antenne Yagi), travailler le diagramme de rayonnement pour supprimer tout ce qu'on ne veut pas.

Il y a énormément de solutions possible pour résoudre tel ou tel problème, mais **c'est un équilibre.** Vous pouvez disposer d'une Yagi a 20 Db de gain, mais ce sera une vraie passoire si vous n'optimisez que ce paramètre.

La réactance et le ROS serait si important qu'elle serait pas foutue de faire déclencher un relais a 80 km.

MMANA-GAL :

Commencez par ouvrir le fichier que vous avez exporté avec Yagi Calculator, rendez vous ensuite dans l'onglet « View ».

TECHNIQUE

Voici la visualisation de l'antenne, où j'ai ajouté quelques traits et lettres pour expliquer comment fonctionne X et Y.

Premièrement il est préférable de rester sur « Middle point of antenna », en quelque sorte le « point 0 » de toute les coordonnées.

Le centre de l'antenne, le 0 absolu est représenté par le rond, qui représente l'alimentation du dipôle

Sur l'élément numéro 4, le plus éloigné du dipôle, les cotes sont les suivantes :

X1 et X2: position sur le boom par rapport au dipôle, soit à 94.1 cm

Y1 et Y2: la taille de l'élément, le logiciel travaille ainsi, il faut renseigner le coté gauche et droit, ce qui correspond à diviser par deux la taille entière de l'élément concerné. Le signe « – » est très important, sinon vous mettez les deux éléments du même coté.

R: Tout simplement le rayon en mm, n'oubliez pas de modifier cette valeur dans le tableur.

CALCUL DES CARACTÉRISTIQUES ANTENNE

 MMANA-GAL basic CAProgram Files (x86)/Yagi Calculator/MmanaFiles/Yagi 4 145 non op.maa □ □ ■ X File Edit Tools Setup Help MMANA-GALpro □ □ ■ X □ □ ■ X										
Freq 145.000 • MHz Ground © Free space © Perfect © Real Add height 20.00 • m Material Al pipe •	WAVE LENGTH TOTAL PULSE FILL MATRIX FACTOR MATR PULSE U (V v1c 1.004 CURRENT DATA FAR FIELD NO FATAL ERR 0.09 sec	n) I (mA) 10.16+jź	23.88	Z (Ohm) 15.09-j35	.46	SWR 5.09				
No. F (MHz) R (Ohm) jX (O	hm) SWR 50	Gh dBd	Ga dBi	F/B dB	Elev.	Ground	Add H.	Polar.		
3 145.0 15.09 -35.46	5.09	6.1	8.25	7.66		Free		hori.		
2										
Start Optimization	Optimiz	zation log	P	lots] [Wire e	edit	Elemen	t edit		

CALCUL DES CARACTÉRISTIQUES ANTENNE

TECHNIQUE

🛞 м	MMANA-GAL basic C:\Program Files (x86)\Yagi Calculator\MmanaFiles\Yagi 4 145 non op.maa											
File	File Edit Tools Setup Help MMANA-GALpro											
Geo	Geometry View Calculate Far field plots											
	WAVE LENGTH = 2.068 (m)											
		Freq 145.00		z T	OTAL PULSE =	= 150						
Gro	ound			Ē	ACTOR MATRI	х						
	Free	space		P	ULSE U (V)		I (mA)		Z (Ohm)		SWR	
	Perf	ect		w C	1C 1.00+	j0.00	10.16+jź	23.88	15.09-j35	.46	5.09	
0	Real	I		Ē	AR FIELD							
	Add height 20.00 - m			rm 0	IO FATAL ERRO .09 sec	OR(S)						
		Material A	l pipe	•								
N	lo.	F (MHz)	R (Ohm)	jX (Ohm) SWR 50	Gh dBd	Ga dBi	F/B dB	Elev.	Ground	Add H.	Polar.
3		145.0	15.09	-35.46	5.09	6.1	8.25	7.66		Free		hori.
2												
1		1										
			_									_
		Start	Optin	nization	Optimiz	ation log) [P	lots	Wire e	edit	Elemer	nt edit

Dans l'onglet « Calculate » on peut définir les caractéristiques de l'antenne à une fréquence donnée. On choisis 145 MHz, puis Free Space et enfin « Al pipe » qui signifie tube aluminium. Il ne reste plus qu'a cliquer sur « Start ».

On peux voir que les résultats sont médiocres, ROS de 5, réactance de 35 Ohms, pour une antenne taillée pour le 145 c'est loin d'être ça.

TECHNIQUE

La fenêtre « Plots » permet de visualiser les résultats avec un graphique, c'est plus facile a interprêter. Pour y accéder suivez les flèches. BW ou BandWitth est la bande passante.

Après avoir cliqué sur « Detailled » vous obtiendrez tout les graphiques.

Z: Impédance et Réactance – SWR: le ROS – Gain/FB: Rapport avant arrière – Far Fields: diagrammes de rayonnements.

Conclusion avec les données de Yagi calculator sans modifications:

Je crois qu'on peut se passer de commentaires, les images montrent une antenne qui va être moins performante qu'un quart d'onde. En dessous de 10 éléments, ce logiciel donne des cotes qui ne vont pas du tout.

OPTIMISATION DE L'ANTENNE

6	🔊 мма	NA-GAL	0	ptimization			factory and a						
	File Ed	lit Too	Rat	e of evaluation									
			E	No goal set (si	mple sweep)		A	dvanced		Band se	Band setting		
	Geome	try Vie											
I				Gain	F/B	Elev	JX	SV	VR	Match	Current		
		Freq				Q <u>.</u>				·····			
I	Groun	d	⊽ s	tep in absolute v	alues			Resolution	n 2deg	✓ display log			
I	Free	e space	Para	ameters					-		-		
	O Per	fect		Ture	Desition	What	Accesieted	Char	Min	Mari	Value		
	Real	al		b. Type	Position	vvnat	Associated	Step	Win	wiax	Value		
I		- 1	1	Eleme.	2	Y	0	0.001	0.0	2000.0	0.9797		
		Add he	2	Eleme.	1	Y	0	0.002	0.0	2000.0	1.0108		
		Mate	3	Eleme.	1	Int.	0	0.004	0.0	2000.0	0.414		
I		-	4	Eleme.	3	Y	0	0.001	0.0	2000.0	0.9262		
	No.	F (N	5	Eleme.	3	Int.	0	0.001	0.0	2000.0	0.155		
	8	145.0	6	Eleme.	4	Y	0	0.001	0.0	2000.0	0.9174		
	7	145.1	7	Eleme.	4	Int.	0	0.01	0.0	2000.0	0.7857		
1	6	145.5	next	t i i									
	5	144.5					-						
	4	144.0	-										
	2	1447 4		Del	All eleme	ents	Element ed	lit		Start	Cancel		
			Start	Optimizat	tion	timization I	og Dic	ots][Wire edit] Eleme	ent edit		

Commencez par régler les priorités, le Gain le rapport avant/arrière etc. Il faut bien garder à l'esprit qu'une antenne est un compromis donc si vous faites une antenne destinée a être large bande, il ne faut pas attendre 15 Dbi avec une 5 éléments.

Ensuite ajoutez tout les éléments par le bouton « All elements ».

ЭМ	MANA-GA	Optimizat	tion								
le	Edit To	Rate of eva	luation								
		🗄 📃 No goa	al set (simpl	e sweep)			Advan	nced		Band se	tting
)eoi	metry V	ie			_						
		Gain		F/B	Elev		1	S	WR	Match	Current
	Freq	1						ų			ų <u>.</u>
G	Band setti	ing	-				100	E	on 2deg	🗹 display l	og
0	No.	E (MHZ)	Sour. 1	Phas 1	Volt 1	Sour. 2	Phas 2				
	1	145.0	w1c	0.0	1.0				Min	Max	Value
<u> </u>	2	146.0	w1c	0.0	1.0				0.0	2000.0	0.9797
	3	145.0	w1c	0.0	1.0				0.0	2000.0	1.0108
	next								0.0	2000.0	0.414
_									0.0	2000.0	0.9262
_				1					0.0	2000.0	0.155
8				- 1					0.0	2000.0	0.9174
7				1					0.0	2000.0	0.7857
5											
5			_					<u> </u>			
4		Del	Give 🗹	priority to I	No 1	L	OK		_		
2	_	0								Start	Cancel
		Start]	Optimization		Optimization	n log 🔡	Plots		Wire edit] Elem	ent edit

TECHNIQUE

Sur « Band setting » on trouve la largeur de bande, ça reste une histoire de compromis alors il faut essayer encore et encore. Une antenne large bande sera moins performante qu'une bande étroite.

Pour ma part je coche la case « Give priority to no 1 » qui permet de définir le centre de bande.

Si vous souhaitez obtenir les côtes de l'antenne, soit vous passez par la fenêtre montrée ci-dessus ou sinon en cliquant sur l'onglet « view » en sélectionnant les éléments un a uns.

\triangle		ALC: N	100	1. 1			1.0		x
Parame	eters View	Change only	end points		Change all coor	dinates pro	portionally		
No.	Form	Int.(m)	Width(m)	Height(m)	Length(m)	R(mm)	Seg.	Wires	\Box
1	H line	0.5065*	1.0358*	0.0	0.0	4.0	-1	1	1
2	H line	Base element	0.9946*	0.0	0.0	4.0	-1	1	
3	H line	0.3081*	0.9224*	9.0	0.0	4.0	-1	1	
4	H line	0.5791*	0.9268*	N Q	0.0	4.0	-1	1	
5	H line	0.5165*	0.8858*	0.0	0.0	4.0	-1	1	
next									
		/			- 1				
					- 1				
Es	oacen	nent	1						
II. '			10	Longu	our do l	'álár	mon	7	
Le	dipole	e sert de	e rét l	Longu	eur de i	elei	nen	9	
	-								
									_
	DN: Jo	uer sur	longu	eur du	boom.				1
L L			. Ŭ						. I
	<u> </u>	<u>ouer un</u>	<u>iquem</u>	<u>ent su</u>	<u>r l'espac</u>	<u>cem</u>	<u>ent</u>	<u>des e</u>	IJ
OFF .	- distance from	first element, ON - s	pace between wi	ires	lamb	da	ОК	Cano	el
45	8 Eleme	e. 5	Y)	0.001 0.0	2000	.0 0.8	8858	1
44	9 Eleme	e. 5	Int. ()	0.004 0.0	2000	.0 0.	5165	
12							i		-
r d	Del	All eleme	ents	Element edit		Start		Cancel	
	otun	optimization	Optimi	zacioni iog	Hoto	The care		clothene our	

Première optimisation, résultats à améliorer

Voilà le logiciel qui est en train de calculer. Plus on répète l'opération, plus le compromis est juste, et plus le nombre d'essais est grand.

Répéter l'opération plusieurs fois, jusqu'à une optimisation.

TECHNIQUE

MMANA-GAL basic C:\Users\Portable\Documents\yagi 5 él finale.maa												
File Edit Tools Setup Help MMANA-GALpro												
🗅 🗁 🖪 🗄 \leftrightarrow 번 🖉 🏥 🗎 🕰 🛆 🕀 🐚 🛠 🖩												
Geometry View Calculate Far field plots												
Yagi01												
	Eroa 145.00	0 – MH	_ Opt	im. Gain:18.	0% F/B:18.	4% jX:29.3	% SWR:34	1.4%				
	145.00	V VIII	2 V	al Para	R jX	SWR G	a F/B	EI				
Ground			1	1 0.9946	44.4 -0.0	1.13 10.	78 19.87	0.0 14	45.5			
Free	space		2	1 0.9946	47.0 -0.2	1.06 10.	20 20 42	0.0 14	45.0 46.0			
O Perfe	ect		4	1 0.9956	40.6 0.5	1.23 10.	78 19 86	0.0 1	46.0			
			5	1 0.9956	47.2 0.5	1.06 10.	75 19.40	0.0 14	45.0			
C Real			6	1 0.9956	40.8 1.1	1.23 10.	80 20.42	0.0 14	46.0			
	_		7	1 0.9936	44.3 -0.7	1.13 10.	78 19.87	0.0 14	45.5			
A	Add height 7	.00	- m 8	1 0.9936	46.8 -0.9	1.07 10.	76 19.43	0.0 1	45.0			
	Material A	l pipe	- V	1 0.9936 al Para	40.5 -0.2 R iX	1.24 10. SWR G	80 20.43 a F/B	0.0 14 FI	46.0			
No.	F (MHz)	R (Ohm)	jX (Ohm)	SWR 50	Gh dBd	Ga dBi	F/B dB	Elev.	Ground	Add H.	Polar.	^
48	146.0	43.31	0.1161	1.15	8.61	10.76	19.64		Free		hori.	
47	145.75	45.35	0.0318	1.1	8.61	10.76	19.38		Free		hori.	
46	145.0	49.49	0.2818	1.01	8.57	10.72	19.07		Free		hori.	
45	144.5	50.86	0.3078	1.02	8.54	10.69	18.82		Free		hori.	
44	144.0	51.49	-0.0483	1.03	8.49	10.64	18.41		Free		hori.	
47 (140.0	40.04	0.4404	4.45	0.04	40.70	40.04		r		6.1.2 F	*
,	Start	Optin	nization	Optimiz	zation log	P	lots	Wire e	dit	Elemer	nt edit	

Optimisation terminée

Voici l'antenne aboutie, un ROS assez faible a première vue, gain de 10.6 Dbi, réactance pas mal du tout et enfin rapport A/R élevé.

TECHNIQUE

INTERPRÉTATION DES RÉSULTATS

Au bout d'un moment vous constaterez que plus rien n'évolue, et qu'il faut agir sur les curseurs de manière un peu brutale.

Cela signifie que vous avez atteint les limites de calcul du logiciel, il peut a peine faire mieux.

Les logiciels d'optimisations sont pas récents pour la plupart.

Ils utilisent un moteur de calcul souvent ancien. Le souci se pose avec certains. Mes 2 PC, un fixe et un portable sont tout les deux en x64, le système est totalement incompatible avec ces logiciels.

RESULTATS

J'ai pour référence un QTH bien précis d'où j'ai 8 relais, 2 difficiles pour les correspondants les autres parfaits.

Voici l'antenne construite et « fixée ». Je rappelle que c'est un prototype, donc c'est juste pour tester les caractéristiques.

Je l'ai construite a l'aide de tube plein d'aluminium de 4 mm de diamètre.

Malheureusement je ne trouvais pas de longueur supérieur a 1,00 m, ce qui a été gênant pour le réflecteur qui devait normalement mesurer 1.03m.

J'ai tenté d'accrocher tout les relais que j'avais l'habitude d'entendre, les relais difficiles le sont encore plus pour mes correspondants, normal. Les résultats sont donc à l'usage à la hauteur de ce que j'attendais.

Comme je ne m'appelle pas Charles, je ne peux que tester le ROS avec un Zetagi HP 201.

Je dispose bien d'un CN 103 L de Daiwa a aiguilles croisées, mais la fiabilité des résultats est mauvaise.

Pour ceux qui seraient tentés de crier au blasphème, je les invites à m'envoyer le MFJ 269, (d'autant plus que Noël approche) qui permettrait de tester tous les paramètres dont j'ai besoin. L'adresse se trouve sur l'annuaire de l'ANFR.

Coté résultats on retrouve a quelque chose près la courbe du ROS annoncée. Le retour est très faible et entre 144.5 et 145 l'aiguille du galva ne décolle même pas.

CONCLUSION:S

Les résultats logiciels ont l'air d'être proche de la réalité, a confirmer toutefois. MMANA GAL a l'air d'être un bon outil. 73 et bonne bidouille, F4HOK, Aymeric

https://f4hok.wordpress.com/2015/11/09/conception-et-fabrication-dune-yagi-wip/